Regiochemistry in radical cyclisations (4-exo-trig versus 5-endo-trig) of 2-halo- N-(3,4-dihydro-2-naphthyl)acetamides

Masazumi Ikeda, ${ }^{*, a}$ Shinji Ohtani, ${ }^{a}$ Taeka Yamamoto, ${ }^{a}$ Tatsunori Sato ${ }^{a}$ and Hiroyuki Ishibashi ${ }^{*, b}$

${ }^{a}$ Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8414, Japan
${ }^{b}$ Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920-0934, Japan

Abstract

The regioselectivity in $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated radical cyclisations (4-exo-trig versus 5-endo-trig) of a range of 2-halo- N-(3,4-dihydro-2-naphthyl)acetamides has been examined from the standpoint of the effects of substituents on the radical centre and on the nitrogen atom as well as the reaction temperature. When the substituent on the radical centre is a hydrogen or chlorine atom, 4-exo-trig cyclisation (β-lactam formation) is favoured in boiling toluene, while radical stabilising substituents such as methyl, phenyl, phenylthio, dimethyl and dichloro groups bring about 5-endo-trig cyclisation (γ-lactam formation) predominantly or exclusively. In boiling benzene, however, the predominant formation of β-lactam is observed for the methyl-substituent. On the other hand, no remarkable difference in the product distributions between the methyl and benzyl substituents on the nitrogen atom is observed. These results are discussed in terms of kinetic or thermodynamic considerations.

Introduction

The control of the regiochemistry of radical cyclisations is a subject of intense investigation. ${ }^{1}$ We and others have demonstrated that the N-vinylic carbamoylmethyl radicals $\mathbf{1}$, generated from the corresponding α-halo amides, cyclise generally in a 5 -endo-trig manner yielding γ-lactams 3 through the intermediates $\mathbf{2}^{2,3}$ while introduction of radical stabilising group(s) such as phenylthio or phenyl at the terminus of the N-vinyl group leads to the formation of β-lactams 5 (Scheme 1). ${ }^{4,5}$ These results suggest that the high stability of the radical intermediates $\mathbf{4}$ plays a crucial role in the switch of regioselectivity from the 5 -endo-trig mode to the 4 -exo-trig mode in the ring closure of $\mathbf{1}$. On the other hand, $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated radical cyclisation of 2 -chloro- N-(3,4-dihydro-2-naphthyl)- N-methylacetamides $\mathbf{6 a - c}$ in boiling toluene gave β-lactams $\mathbf{8}$ and/or γ-lactams 9 , depending upon the nature of the substituents on the radical centre of the initially formed carbamoylmethyl radicals $7 .{ }^{2 b}$ The 2 -chloroacetamide $\mathbf{6 a}$ afforded exclusively the β-lactam 8 a , while the 2 -chloro-2-phenylacetamide $\mathbf{6 c}$ gave solely the γ-lactam 9c. The 2 -chloropropanamide $\mathbf{6 b}$ showed an intermediate behaviour to give a mixture of the β-lactam $\mathbf{8 b}(29 \%)$ and the γ-lactam 9b (40%). These observations indicate that the substituents on the radical centre of the carbamoylmethyl radicals 7 also affect the regiochemistry of cyclisation. In order to obtain more information on the factors determining the regiochemistry of the radical cyclisation of 6 , we now examined in detail the effects of the substituents on the radical centre and on the nitrogen atom of 7 as well as the reaction temperature.

Results and discussion

The N-methyl substituted radical precursors $\mathbf{6 d}-\mathbf{f}$ were readily prepared by acylation of the imines derived from β-tetralone and methylamine. The 2,2-bis(phenylthio)acetamide $\mathbf{6 g}$ was prepared by a nucleophilic substitution reaction of the 2,2dichloroacetamide $\mathbf{6 d}$ with benzenethiolate ion.

When the dichloroacetamide 6d was treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ (3.6 equiv.) and a small amount of azoisobutyronitrile (AIBN) in boiling toluene, the β-lactam 8a was obtained in 52% yield through reduction of the corresponding chloro lactam 8d

6a; $\mathrm{R}=\mathrm{H}$
6b; $\mathrm{R}=\mathrm{Me}$

8a,b

Scheme 1 Reagents and conditions: i, $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, reflux
(Scheme 2). Interestingly, the trichloroacetamide 6e, upon treatment with $\mathrm{Bu}_{3} \mathrm{SnH}$ (1.2 equiv.) and AIBN, gave the aromatised product $\mathbf{1 0}$ in 40% yield. Since only 1.2 equiv. of $\mathrm{Bu}_{3} \mathrm{SnH}$ was used, it was assumed that the aromatisation took place by a non-radical process which involved dehydrochlorination from the initially formed dichloro γ-lactam $\mathbf{9 e}$.

Treatment of 2-bromo-2-methylpropanamide $\mathbf{6 f}$ with $\mathrm{Bu}_{3} \mathrm{SnH}$ (1.2 equiv.) and AIBN in boiling toluene gave the γ-lactam 9f as the sole product in 68% yield. The cis-stereochemistry of

10

$6 f$

6 g

9f

9 g

11

Scheme 2 Reagents and conditions: i, $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, reflux; ii, LDA, MeI, THF, $-78^{\circ} \mathrm{C}$; iii, $\mathrm{NaIO}_{4}, \mathrm{H}_{2} \mathrm{O}$-acetone, room temp.; iv, toluene, reflux
the ring-junction was assigned on the basis of the coupling constant ($J 8.6 \mathrm{~Hz}$) between $3 \mathrm{a}-\mathrm{H}$ and $9 \mathrm{~b}-\mathrm{H}$, which closely resembled that $(J 7.8 \mathrm{~Hz})$ for $9 \mathbf{9 b}$ obtained as the major product of the cyclisation of $\mathbf{6 b}$.

Treatment of the bis(phenylthio)acetamide $\mathbf{6 g}$ with $\mathrm{Bu}_{3} \mathrm{SnH}$ (1.2 equiv.) and AIBN in boiling toluene gave the γ-lactam $\mathbf{9 g}$ in 52% yield as a single stereoisomer along with the reduction product $11(13 \%)$. The cis ring-junction of 9 g was determined by transformation to compound 9 f through desulfurisation followed by dimethylation of the resulting lactam 12. The antirelationship between $1-\mathrm{H}$ and $9 \mathrm{~b}-\mathrm{H}$ of 9 g was confirmed by an epimerisation experiment: treatment of $\mathbf{9 g}$ with potassium tertbutoxide in boiling 2-methylpropan-2-ol resulted in recovery of the starting material, indicating that $9 \mathbf{g}$ is the thermodynamic-
ally more stable 1β (exo)- PhS isomer. Thermal elimination of benzenesulfenic acid from the corresponding sulfoxide gave the aromatised product $\mathbf{1 0}$ in 38% yield. The formation of $\mathbf{1 0}$ may be rationalised by assuming that migration of the double bond from the initially formed $\mathrm{C}-1-\mathrm{C}-9 \mathrm{~b}$ position to the $\mathrm{C}-3 \mathrm{a}-\mathrm{C}-9 \mathrm{~b}$ position is followed by subsequent dehydrogenation. Apparently, aromatisation is the driving force of this reaction.

Next, in order to see the steric effects of the substituent on the nitrogen atom, we prepared the N-benzyl congeners $\mathbf{6 h}-\mathbf{j}$

6h; $\mathrm{R}=\mathrm{H}$
6i; $R=M e$

8h; R = H
8i; $R=M e$

13; $\mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{H}$
14; $\mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{Me}$
15; $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}$

6j

$9 i-\beta ; 1 \beta-\mathrm{Me}$ $9 \mathrm{i}-\alpha ; 1 \alpha-\mathrm{Me}$

16
and subjected them to the radical cyclisation conditions. Treatment of the 2-chloroacetamide $\mathbf{6 h}$ with $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN in boiling toluene gave the β-lactam $\mathbf{8 h}(44 \%)$, along with the reduction product $\mathbf{1 3}(23 \%)$. The propanamide $\mathbf{6 i}$ gave a mixture of the β-lactam $8 \mathbf{i}$ and the γ-lactams $9 \mathbf{i}-\beta(1 \beta-\mathrm{Me})$ and $9 \mathbf{i}-\alpha(1 \alpha-$ Me) in 21, 45 and 6% yields, respectively, in addition to the reduction product $14(12 \%)$. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8 i}$ showed it to be a mixture of two diastereoisomers in a ratio of ca. $1.8: 1$. Stereochemistries of $\mathbf{9 i}-\beta$ and $\mathbf{9 i}-\alpha$ were confirmed by a comparison of the chemical shifts of their C-1-methyl protons with those of the N-methyl congeners $\mathbf{9 b}$. Thus, the signal due to the 1β-methyl protons of $\mathbf{9 b}$ appeared at $\delta 1.41$, whereas the signal due to the 1α-methyl protons shifted upfield to $\delta 0.90$. In the cases of $\mathbf{9 i}-\beta$ and $\mathbf{9 i}-\alpha$, the corresponding signals appeared at $\delta 1.46$ and 0.97 , respectively, indicating the C-1-methyl groups of $9 \mathbf{i}-\beta$ and $9 \mathbf{i}-\alpha$ to have the β - and α-configurations, respectively. The trichloroacetamide $\mathbf{6 j}$ gave the aromatised compound 16 in 53% yield. Thus, no remarkable difference was observed in the behaviour of cyclisations between the N-methyl and N-benzyl derivatives.

The above results revealed that the substituent(s) on the initially formed carbamoylmethyl radical 17 play(s) a crucial role in determining the regiochemistry. When $\mathrm{R}^{2}=\mathrm{H}$ or Cl in 17, then β-lactam formation is favoured, while radical stabilising substituents such as methyl, phenyl, phenylthio, dimethyl or dichloro groups lead to γ-lactams predominantly or exclusively. One possible explanation for these results is based on a consideration of the reversibility of the 4 -exo-trig cyclisation and ring-opening between 17 and $18 .{ }^{6}$ The 4-exo-trig cyclisation might be a kinetically favoured process compared to the 5-endo-trig one, so that the carbamoylmethyl radicals 17 would give initially the benzylic radicals 18 (see Scheme 3). In the former case $\left(\mathrm{R}^{2}=\mathrm{H}\right.$ or Cl$)$, the subsequent reduction step is faster than the ring-opening step, and hence β-lactam form-

17

Scheme 3
ation takes place. On the other hand, in the latter case having the radical-stabilising substituent(s), the ring-opening of $\mathbf{1 8}$ occurs rapidly to give the relatively stable initial radicals $\mathbf{1 7}$, and the reduction step takes place after the thermodynamically more stable radicals 19 have been formed by the 5 -endo-trig cyclisation of $\mathbf{1 7}$ to lead to the formation of the γ-lactams 9 .

Support for the proposed mechanistic scheme was derived from an examination of the effects of the reaction temperature ${ }^{7}$ using the 2-bromopropanamides $\mathbf{6 k}$ and $\mathbf{6 1}$ as radical precursors instead of the corresponding chloro amides $\mathbf{6 b}$ and $\mathbf{6 i}$. Thus, a solution of the N-methyl derivative $\mathbf{6 k}$ in boiling benzene (at $80^{\circ} \mathrm{C}$) was treated slowly with a mixture of $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN during 3 h to give the β-lactam $\mathbf{8 b}$ as the major product (see entry 1 in Table 1), whereas in boiling toluene (at $110^{\circ} \mathrm{C}$) the γ-lactam 9b was obtained as the major product (see entry 2). This was also the case for the N-benzyl congener $\mathbf{6 l}$ (see entries 3 and 4). These results clearly indicate that the 4-exo cyclisation is a kinetically favoured process, whereas at higher temperature (in boiling toluene), the ring-opening of the radicals 18 formed by 4-exo cyclisation rapidly occurs, and the resulting radicals 17 cyclise in a 5 -endo-trig manner to give the thermodynamically stable radicals 19. If $\mathrm{Bu}_{3} \mathrm{SnH}$ was added rapidly to a solution of these radical precursors, the kinetically favoured radicals 18 might be immediately trapped by $\mathrm{Bu}_{3} \mathrm{SnH}$ to result in an increase in the amount of the β-lactams. This was realised by adding a mixture of $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN to a boiling toluene solution of $\mathbf{6 k}$ within 30 min ; these conditions gave an approximately equal amount ($54: 46$) of the β-lactam $\mathbf{8 b}$ and the γ-lactam 9b (compare with entry 2).

Experimental

Mps were measured on a Yanaco MP-J3 micro melting point apparatus and are uncorrected. IR spectra were recorded on a JASCO-IR-A-100 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR (60 and 300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75.4 MHz) spectra were measured on a JEOL-JNM-PMX 60 or a Varian XL-300 spectrometer for solutions in $\mathrm{CDCl}_{3} . \delta$ Values quoted are relative to tetramethylsilane, and J values are given in Hz . Exact mass determinations (FAB and EI mass spectra) were obtained on a JEOL-SX 102A instrument. Column chromatography was performed on Silica gel $60 \mathrm{PF}_{254}$ (Nacalai Tesque) under pressure.

General procedure for the preparation of 2-halo- N -(3,4-dihydro-2-naphthyl)- N -methylacetamides $\mathbf{6 d - f}$

β-Tetralone ($3.0 \mathrm{~g}, 21 \mathrm{mmol}$) was added to anhydrous methylamine $\left(10 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ and the mixture was heated in a sealed tube at $100^{\circ} \mathrm{C}$ for 2 h . The reaction vessel was cooled to $-78^{\circ} \mathrm{C}$, the stopper was removed, and the reaction mixture was allowed to warm to room temperature to remove any excess of methylamine. To the residue cooled to $0^{\circ} \mathrm{C}$ were successively added diethyl ether $\left(30 \mathrm{~cm}^{3}\right)$, triethylamine ($2.5 \mathrm{~g}, 25 \mathrm{mmol}$),

6k; $\mathrm{R}=\mathrm{Me}$ 61; $R=B n$
$\mathbf{8 b} ; \mathrm{R}=\mathrm{Me}$
8i; $R=B n$

$\begin{array}{ll}\text { 9b; } & R=M e \\ \text { 9i; } & R=B n\end{array}$

Scheme 4 Reagents and conditions: i, $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, benzene or toluene, reflux

Table 1 Effects of the reaction temperature on the regioselectivity in radical cyclisations of $\mathbf{6 k}$ and $\mathbf{6}^{a}$

			Products b		
				Yield (\%) $)^{\boldsymbol{c}}$	$\mathbf{8 b}: \mathbf{9 b}$ or $\mathbf{8 i}: 9 i$
Entry	Compound	Solvent		$73: 27$	
$\mathbf{1}$	$\mathbf{6 k}$	benzene	$\mathbf{8 b}+\mathbf{9 b}$	56	$38: 62$
$\mathbf{2}$	$\mathbf{6 k}$	toluene	$\mathbf{8 b}+\mathbf{9 b}$	60	$69: 31$
$\mathbf{3}$	$\mathbf{6 l}$	benzene	$\mathbf{8 i}+\mathbf{9 i}$	49	$30: 70$
$\mathbf{4}$	$\mathbf{6 l}$	toluene	$\mathbf{8 i}+\mathbf{9 i}$	63	

${ }^{a}$ For the reaction conditions, see the text. ${ }^{b}$ Simple reduction product 15 (19 and 13\% yields for entries 1 and 2, respectively) or 14 (16 and 13\% yields for entries 3 and 4 , respectively) was also obtained. ${ }^{c}$ Combined yield of $\mathbf{8 b}$ and $\mathbf{9 b}$, or $\mathbf{8 i}$ and $\mathbf{9 i}$.
and a solution of an appropriate acyl chloride (bromide for $\mathbf{6 f}$) (25 mmol) in diethyl ether $\left(10 \mathrm{~cm}^{3}\right.$). The mixture was stirred at room temperature for 30 min and water $\left(10 \mathrm{~cm}^{3}\right)$ was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with diethyl ether. The combined organic layer and extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was chromatographed on silica gel [hexaneAcOEt (4:1)] to give an enamide. The following compounds were thus obtained.
2,2-Dichloro- N -(3,4-dihydro-2-naphthyl)- N -methylacetamide
6d. Yield 73%, crystals, mp $104-104.5^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 57.6; H, 4.8; N, 5.2. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}$ requires C, 57.8; $\mathrm{H}, 4.85 ; \mathrm{N}, 5.2 \%)$; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1695 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 2.53 ($2 \mathrm{H}, \mathrm{t}$ like, J ca. 8), 3.04 ($2 \mathrm{H}, \mathrm{t}$ like, J ca. 8), 3.18 ($3 \mathrm{H}, \mathrm{s}$, NMe), $6.52(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}, \mathrm{COCH})$ and $7.07-7.27(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

2,2,2-Trichloro- N -(3,4-dihydro-2-naphthyl)- N -methyl-
acetamide 6e. Yield 43\%, an oil (Found: C, 51.2; H, 4.0; N, 4.3. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{NO}$ requires $\left.\mathrm{C}, 51.3 ; \mathrm{H}, 4.0 ; \mathrm{N}, 4.6 \%\right)$, $v_{\max }\left(\mathrm{CCl}_{4}\right)^{/}$ $\mathrm{cm}^{-1} 1695 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.35-3.2(4 \mathrm{H}, \mathrm{m}), 3.33(3 \mathrm{H}, \mathrm{s}$, $\mathrm{NMe})$, $6.54(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H})$ and $7.05-7.3(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.
2-Bromo- N -(3,4-dihydro-2-naphthyl)-2, N -dimethylpropanamide 6f. Yield 80%, an oil (Found: C, 58.5; H, 5.9; N, 4.4. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrNO}$ requires C, $\left.58.45 ; \mathrm{H}, 5.9 ; \mathrm{N}, 4.5 \%\right)$; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) /$ $\mathrm{cm}^{-1} 1630 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.04(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}), 2.4-3.1$ $(4 \mathrm{H}, \mathrm{m}), 3.24(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 6.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H})$ and $6.85-7.4$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

N-(3,4-Dihydro-2-naphthyl)- N-methyl-2,2-bis(phenylthio)acetamide 6 g

Benzenethiol ($897 \mathrm{mg}, 8.14 \mathrm{mmol}$) was added to a solution of sodium ethoxide ($558 \mathrm{mg}, 8.14 \mathrm{mmol}$) in ethanol $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 10 min . To this was added a solution of $\mathbf{6 d}(1.0 \mathrm{~g}, 3.7 \mathrm{mmol})$ in ethanol $\left(3 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temperature overnight. The solvent was evaporated off, dichloromethane ($15 \mathrm{~cm}^{3}$) was added to the residue, and the whole was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (7:1)] to give $\mathbf{6 g}(1.39 \mathrm{~g}, 90 \%), \mathrm{mp} 106-106.5^{\circ} \mathrm{C}$ (from hexaneAcOEt) (Found: C, 72.1; H, 6.0; N, 3.1. $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NOS}_{2}$ requires C, $71.9 ; \mathrm{H}, 5.5 ; \mathrm{N}, 3.35 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1640 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 1.75-2.85 ($4 \mathrm{H}, \mathrm{m}$), $3.04(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$, $5.38(1 \mathrm{H}, \mathrm{s}$, $\mathrm{COCH}), 6.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H})$ and 6.6-7.7 (14 H, m, ArH).

Radical cyclisation of $6 d$

General procedure. A solution of $\mathrm{Bu}_{3} \mathrm{SnH}(1.36 \mathrm{~g}, 4.66 \mathrm{mmol})$ and $\operatorname{AIBN}(129 \mathrm{mg}, 0.79 \mathrm{mmol})$ in toluene $\left(100 \mathrm{~cm}^{3}\right)$ was added to a boiling solution of compound $\mathbf{6 d}(350 \mathrm{mg}, 1.30 \mathrm{mmol})$ in toluene ($100 \mathrm{~cm}^{3}$) by using a syringe pump over a period of 1 h and the mixture was heated under reflux overnight. After removal of the solvent, diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ and 8% aq. KF $\left(20 \mathrm{~cm}^{3}\right)$ were added to the residue, and the mixture was stirred vigorously at room temperature for 30 min . The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (5:1)] to give 1-methylspiro[azetidine-4, 2'-1', $2^{\prime}, 3^{\prime}, 4^{\prime}$-tetrahydronaph-thalen]-2-one $\mathbf{8 a}(137 \mathrm{mg}, 52 \%)$, mp $96.5-97.5^{\circ} \mathrm{C}$ (from hexane) (lit., ${ }^{2 b} 93.5-94.5^{\circ} \mathrm{C}$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} \quad 1755 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.85-1.94(1 \mathrm{H}, \mathrm{m}), 2.12(1 \mathrm{H}$, ddd, $J 12.4,10.3,6.8)$, $2.69(1 \mathrm{H}, \mathrm{d}, J 14.5), 2.76(3 \mathrm{H}, \mathrm{s}), 2.76(1 \mathrm{H}, \mathrm{d}, J 14.5), 2.82$ (1 H, d, J 16.3), 2.88-3.08 ($2 \mathrm{H}, \mathrm{m}$), $3.20(1 \mathrm{H}, \mathrm{d}, J 16.3)$ and 7.06-7.18 (4 H, m).

Radical cyclisation of $\mathbf{6 e}$

Following the general procedure, compound $\mathbf{6 e}(500 \mathrm{mg}, 1.64$ $\mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(573 \mathrm{mg}, 1.97 \mathrm{mmol})$ and AIBN ($80 \mathrm{mg}, 0.33 \mathrm{mmol}$). After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (10:1)] to give 3-methyl-2,3-dihydro-1H-benz[e]indol-2-one $10(129 \mathrm{mg}$, 40%, mp $143-144{ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, $78.9 ; \mathrm{H}, 5.65 ; \mathrm{N}, 7.1 . \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}$ requires $\mathrm{C}, 79.7 ; \mathrm{H}, 5.6 ; \mathrm{N}$, $7.1 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1705 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.31(3 \mathrm{H}, \mathrm{s}$, NMe), $3.78\left(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}_{2}\right), 7.16(1 \mathrm{H}, \mathrm{d}, J 8.5), 7.34-7.39(1 \mathrm{H}$, $\mathrm{m}), 7.48-7.53(1 \mathrm{H}, \mathrm{m}), 7.65(1 \mathrm{H}, \mathrm{d}, J 8.5)$ and $7.84(2 \mathrm{H}$, dd, $J 8.2,3.1) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 26.5\left(\mathrm{CH}_{2}\right), 34.9\left(\mathrm{CH}_{3}\right), 109.6$, $117.8,122.6,123.9,127.3,128.9,129.1,129.6,130.0,142.6$ and $175.7(\mathrm{C}=\mathrm{O})$.

Radical cyclisation of $\mathbf{6 f}$

Following the general procedure, compound $\mathbf{6 f}(650 \mathrm{mg}, 2.11$ mmol) was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(737 \mathrm{mg}, 2.53 \mathrm{mmol})$ and AIBN ($69 \mathrm{mg}, 0.42 \mathrm{mmol}$). After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt $(4: 1)$] to give (3aR*,9aR*)-2,3,3a,4,5,9b-hexahydro-1H-1,1,3-trimethyl-benz[e]indol-2-one 9f ($326 \mathrm{mg}, 68 \%$), $\mathrm{mp} 85-86^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 78.75; H, 8.4; N, 6.15. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{C}, 78.6 ; \mathrm{H}, 8.35 ; \mathrm{N}, 6.1 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1680$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.79,1.47\left(3 \mathrm{H}\right.$ each, both s, 1- $\left.\mathrm{Me}_{2}\right), 1.65-$ $1.77(1 \mathrm{H}, \mathrm{m}), 2.05-2.15(1 \mathrm{H}, \mathrm{m}), 2.61-2.81(2 \mathrm{H}, \mathrm{m}), 2.95(3 \mathrm{H}$, s, NMe), $3.40(1 \mathrm{H}, \mathrm{d}, J 8.6,9 \mathrm{~b}-\mathrm{H}), 3.79(1 \mathrm{H}, \mathrm{td}, J 8.6,4.4$, $3 \mathrm{a}-\mathrm{H})$ and $7.10-7.23(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 23.2$ $\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{3}\right), 28.6\left(\mathrm{CH}_{3}\right), 44.6$ (quaternary C), $45.8(\mathrm{CH}), 57.4(\mathrm{CH}), 126.1,126.3,128.6$, 129.1, 134.7, 137.2 and $178.9(\mathrm{C}=\mathrm{O})$.

Radical cyclisation of $\mathbf{6 g}$

Following the general procedure, compound $\mathbf{6 g}(700 \mathrm{mg}, 1.56$ $\mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(544 \mathrm{mg}, 1.87 \mathrm{mmol})$ and AIBN ($51 \mathrm{mg}, 0.31 \mathrm{mmol}$). After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (9:2)]. The first fraction gave N -(3,4-dihydro-2-naphthyl)- N -methyl-2(phenylthio)acetamide 11 ($64 \mathrm{mg}, 13 \%$) as an oil (Found: C, 73.6; $\mathrm{H}, 6.4 ; \mathrm{N}, 4.4 . \mathrm{C}_{19} \mathrm{H}_{19}$ NOS requires $\mathrm{C}, 73.75 ; \mathrm{H}, 6.2 ; \mathrm{N}$, $4.5 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1635 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.2-3.2$ $(4 \mathrm{H}, \mathrm{m}), 3.09(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.80\left(2 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{2}\right), 6.28(1 \mathrm{H}$, br s, 1-H) and 6.9-7.6 (9 H, m, ArH).

The second fraction gave ($\left.1 \mathrm{R}^{*}, 3 \mathrm{aS}^{*}, 9 \mathrm{bR} *\right)-2,3,3 \mathrm{a}, 4,5,9 \mathrm{~b}-$ hexahydro-1H-1-phenylthio-3-methylbenz[e]indol-2-one 9g (252 $\mathrm{mg}, 52 \%$), $\mathrm{mp} 91.5-92.5^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, $73.5 ; \mathrm{H}, 6.5 ; \mathrm{N}, 4.8 \%)$; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1680 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.82-1.93(2 \mathrm{H}, \mathrm{m}), 2.54-2.71(2 \mathrm{H}, \mathrm{m}), 2.87(3 \mathrm{H}, \mathrm{s}$, NMe), 3.50-3.55 (1 H, m), 3.59-3.67 (2 H, m), 7.05-7.46 (7 H, $\mathrm{m}, \mathrm{ArH})$ and $7.63-7.70(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Base treatment of $\mathbf{9 g}$

A mixture of $9 \mathrm{~g}(69 \mathrm{mg}, 0.2 \mathrm{mmol})$ and potassium tert-butoxide ($46 \mathrm{mg}, 0.41 \mathrm{mmol}$) in 2-methylpropan-2-ol $\left(5 \mathrm{~cm}^{3}\right)$ was heated under reflux for 1 h . Water $\left(10 \mathrm{~cm}^{3}\right)$ was added to the reaction mixture and the whole was extracted with diethyl ether. The organic phase was washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was evaporated off and the residue was chromatographed on silica gel [hexane-AcOEt $(2: 1)$] to give crystals whose ${ }^{1} \mathrm{H}$ NMR spectrum was identical to that of the starting material 9g.

$\left(3 \mathrm{a} R^{*}, 9 \mathrm{a} S^{*}\right)-2,3,3 \mathrm{a}, 4,5,9 \mathrm{~b}-H e x a h y d r o-1 H-3-m e t h y l b e n z[e]-$ indol-2-one 12

A solution of $\mathrm{Bu}_{3} \mathrm{SnH}(259 \mathrm{mg}, 0.89 \mathrm{mmol})$ and AIBN $(23 \mathrm{mg}$, $0.14 \mathrm{mmol})$ in toluene $\left(2 \mathrm{~cm}^{3}\right)$ was added all at once to a boiling solution of compound $9 \mathrm{~g}(232 \mathrm{mg}, 0.69 \mathrm{mmol})$ in toluene (5 cm^{3}) and the mixture was heated under reflux for 2 h . After removal of the solvent, diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ and 8% aq. KF (10 cm^{3}) were added to the residue, and the mixture was stirred vigorously at room temperature for 30 min . The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (1:1)] to give 12 ($119 \mathrm{mg}, 84 \%$), $\mathrm{mp} 88-89^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 77.3; H, 7.7; N, 7.2. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}$ requires $\mathrm{C}, 77.6 ; \mathrm{H}$, $7.5 ; \mathrm{N}, 7.0 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1695 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.69-$ $1.82(1 \mathrm{H}, \mathrm{m}), 2.02-2.12(1 \mathrm{H}, \mathrm{m}), 2.40(1 \mathrm{H}, \mathrm{dd}, J 16.7,8.1$, one of 1- H_{2}), 2.61-2.80 $(2 \mathrm{H}, \mathrm{m}), 2.90(1 \mathrm{H}, \mathrm{dd}, J 16.7,9.8$, one of $\left.1-\mathrm{H}_{2}\right), 2.91(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.65(1 \mathrm{H}, \mathrm{q}, J 8.7,9 \mathrm{~b}-\mathrm{H}), 3.84(1 \mathrm{H}$, td, $J 8.1,4.0,3 \mathrm{a}-\mathrm{H})$ and $7.09-7.23$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Preparation of 9f from 12

A solution of $\mathbf{1 2}(119 \mathrm{mg}, 0.59 \mathrm{mmol})$ in THF $\left(2 \mathrm{~cm}^{3}\right)$ was added to a solution of LDA in THF [prepared from diisopropylamine ($573 \mathrm{mg}, 5.67 \mathrm{mmol}$) in THF $\left(2 \mathrm{~cm}^{3}\right)$ and butyllithium (1.6 m in hexane solution, $1.47 \mathrm{~cm}^{3}, 2.36 \mathrm{mmol}$) at $\left.-78^{\circ} \mathrm{C}\right]$ and the whole was stirred for 1 h at the same temperature. To this was added a solution of methyl iodide $(1.79 \mathrm{~g}, 12.6 \mathrm{mmol})$ and hexamethylphosphoramide ($2 \mathrm{~cm}^{3}$) in THF $\left(2 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1.5 h at the same temperature. After quenching with sat. aq. ammonium chloride ($10 \mathrm{~cm}^{3}$), the mixture was extracted with diethyl ether and the extract was washed with $5 \% \mathrm{HCl}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel [hexane$\mathrm{AcOEt}(1: 1)$] to give a mixture of the monomethylated and dimethylated derivatives. This mixture was again treated with LDA and methyl iodide to give $9 \mathrm{f}(129 \mathrm{mg}, 96 \%)$, whose mp ($84-85.5^{\circ} \mathrm{C}$) and spectroscopic data were identical to those of the compound obtained by cyclisation of $\mathbf{6 f}$.

Preparation of 10 from 9 g

A solution of sodium metaperiodate ($192 \mathrm{mg}, 0.9 \mathrm{mmol}$) in water $\left(3 \mathrm{~cm}^{3}\right)$ was added dropwise to a solution of compound $9 \mathrm{~g}(252 \mathrm{mg}, 0.81 \mathrm{mmol})$ in acetone $\left(3 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature overnight. The precipitated salts were removed by filtration and the filtrate was concentrated under reduced pressure. Water was added and the whole was extracted with ethyl acetate. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated, and the residue was purified by column chromatography on silica gel [hexane-AcOEt (2:1)] to give the corresponding sulfoxide ($105 \mathrm{mg}, 40 \%$). This sulfoxide ($105 \mathrm{mg}, 0.32 \mathrm{mmol}$) was dissolved in toluene $\left(5 \mathrm{~cm}^{3}\right)$ and the mixture was heated under reflux in the presence of $\mathrm{NaHCO}_{3}(30$ $\mathrm{mg}, 0.36 \mathrm{mmol}$) overnight. The insoluble material was removed by filtration and the filtrate was concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (4:1)] to give $\mathbf{1 0}$ ($24 \mathrm{mg}, 38 \%$), whose spectroscopic data were identical to those of the compound obtained by cyclisation of $\mathbf{6 e}$.

General procedure for the preparation of N-benzyl-2-halo- N -(3,4-dihydro-2-naphthyl)acetamides $6 \mathrm{~h}-\mathrm{j}$
A solution of β-tetralone ($1.02 \mathrm{~g}, 7.0 \mathrm{mmol}$) and benzylamine
($897 \mathrm{mg}, 8.4 \mathrm{mmol}$) in benzene $\left(30 \mathrm{~cm}^{3}\right)$ was heated under reflux with azeotropic removal of water for 3 h . The solvent was evaporated to give the crude imine which was dissolved in dichloromethane ($30 \mathrm{~cm}^{3}$). To this was added an appropriate acyl chloride (9.1 mmol) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature overnight. After saturated aq. $\mathrm{NaHCO}_{3}\left(30 \mathrm{~cm}^{3}\right)$ had been added at $0{ }^{\circ} \mathrm{C}$, the whole was stirred for 10 min . The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was chromatographed on silica gel [hexane-AcOEt (3:1)] to give an enamide. The following compounds were thus obtained.
N-Benzyl-2-chloro- N-(3,4-dihydro-2-naphthyl)acetamide $\mathbf{6 h}$. Yield 99%, an oil (Found: C, 73.6; H, 6.1; N, 4.2. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClNO}$ requires C, $73.2 ; \mathrm{H}, 5.8 ; \mathrm{N}, 4.5 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1665 ; \delta_{\mathrm{H}}(60$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 2.1-2.6 ($2 \mathrm{H}, \mathrm{m}$), 2.7-3.1 ($2 \mathrm{H}, \mathrm{m}$), $4.19(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{COCH}_{2}\right), 4.76\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.20(1 \mathrm{H}$, br s, 1-H) and 6.8-7.5 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
N-Benzyl-2-chloro- N-(3,4-dihydro-2-naphthyl)propanamide 6i. Yield 82%, an oil (Found: C, 73.5; H, 6.2; N, 4.0. $\mathrm{C}_{20} \mathrm{H}_{20}{ }^{-}$ CINO requires C, 73.7; $\mathrm{H}, 6.2 ; \mathrm{N}, 4.3 \%)$; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1670$; $\delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.65(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me}), 2.15-2.6(2 \mathrm{H}, \mathrm{m})$, 2.7-3.2 ($2 \mathrm{H}, \mathrm{m}$), $4.73\left(2 \mathrm{H}\right.$, br s, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.82(1 \mathrm{H}, \mathrm{q}, J 7$, $\mathrm{COCH}), 6.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H})$ and $6.8-7.5(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.
N-Benzyl-2,2,2-trichloro- N-(3,4-dihydro-2-naphthyl)acet-
amide 6j. Yield 25%, a glass [Found: $(\mathrm{M}+\mathrm{H})^{+}, 380.0362$. $\mathrm{C}_{19} \mathrm{H}_{17}{ }^{35} \mathrm{Cl}_{3} \mathrm{NO}$ requires $\left.M \mathrm{H}^{+}, 380.0376\right] ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1675$; $\delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.3-3.2(4 \mathrm{H}, \mathrm{m}), 4.83\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $6.27(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H})$ and 6.7-7.6 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Radical cyclisation of $\mathbf{6 h}$

Following the general procedure, compound $\mathbf{6 h}(1.29 \mathrm{~g}, 4.15$ $\mathrm{mmol})$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(1.45 \mathrm{~g}, 4.98 \mathrm{mmol})$ and AIBN ($145 \mathrm{mg}, 0.88 \mathrm{mmol}$). After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (5:1)]. The first fraction gave N -benzyl-N-(3,4-dihydro-2-naphthyl)acetamide 13 ($260 \mathrm{mg}, 23 \%$) as an oil (Found: C, 82.2; H, 6.9; N, 4.8. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}$ requires C, 82.3; $\left.\mathrm{H}, 6.9 ; \mathrm{N}, 5.05 \%\right) ; v_{\max }\left(\mathrm{CCl}_{4} / \mathrm{cm}^{-1}\right.$ $1640 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.16(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.32(2 \mathrm{H}, \mathrm{brt}$, $J 8.0), 2.86$ ($2 \mathrm{H}, \mathrm{br} \mathrm{t}, J 8.2$), 4.76 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), $6.15(1 \mathrm{H}, \mathrm{s}$, $1-\mathrm{H})$, 6.92-6.98 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.08-7.19 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.20-7.32 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

The second fraction gave 1-benzylspiro[azetidine-4, $2^{\prime}-1^{\prime}, 2^{\prime}$, $3^{\prime}, 4^{\prime}$-tetrahydronaphthalen]-2-one $\mathbf{8 h}(502 \mathrm{mg}, 44 \%$) as an oil (Found: C, 81.8; H, 7.1; N, 5.0\%); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1735 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.71-1.81(1 \mathrm{H}, \mathrm{m}), 1.89(1 \mathrm{H}, \mathrm{dt}, J 12.5,8.5)$, 2.68-2.88 ($5 \mathrm{H}, \mathrm{m}$), $3.06(1 \mathrm{H}, \mathrm{d}, J 16.4), 4.30,4.44(1 \mathrm{H}$, each, $\left.\mathrm{ABq}, J 15.4, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.96-7.15(4 \mathrm{H}, \mathrm{m})$ and $7.24-7.35(5 \mathrm{H}$, $\mathrm{m})$.

Radical cyclisation of $\mathbf{6 i}$

A solution of $\mathrm{Bu}_{3} \mathrm{SnH}(683 \mathrm{mg}, 2.35 \mathrm{mmol})$ and AIBN (59 mg , $0.36 \mathrm{mmol})$ in toluene ($70 \mathrm{~cm}^{3}$) was added to a solution of compound $\mathbf{6 i}(590 \mathrm{mg}, 1.81 \mathrm{mmol})$ in boiling toluene $\left(150 \mathrm{~cm}^{3}\right)$ over a period of 4 h and the mixture was heated under reflux overnight. After work-up as described in the general procedure, the crude material was chromatographed on silica gel [hexaneAcOEt (9:1)]. The first fraction gave N -benzyl-N-(3,4-dihydro-2-naphthyl)propanamide 14 ($63 \mathrm{mg}, 12 \%$) as an oil (Found: C, 82.4; $\mathrm{H}, 7.2 ; \mathrm{N}, 4.75 . \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}$ requires $\mathrm{C}, 82.4 ; \mathrm{H}, 7.3 ; \mathrm{N}$, $4.8 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1660 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.17(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.32(2 \mathrm{H}$, br t, $J 8.1), 2.43(2 \mathrm{H}, \mathrm{q}, J 7.5$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.87(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J 8.3), 4.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.14$ $(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 6.92-6.97(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.07-7.19(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.20-7.34 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

The second fraction gave ($1 \mathrm{R}^{*}, 3 \mathrm{aR} *, 9 \mathrm{bR} \mathrm{R}^{*}-2,3,3 \mathrm{a}, 4,5,9 \mathrm{~b}-$ hexahydro-1H-1-methyl-3-benzylbenz[e]indol-2-one 9i- β (235 $\mathrm{mg}, 45 \%$) as a glass, $\mathrm{mp} 100-100.5^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 82.6; H, 7.3; N, 5.1\%); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1690 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.46(3 \mathrm{H}, \mathrm{d}, J 7.1,1-\mathrm{Me}), 1.71-1.95(2 \mathrm{H}, \mathrm{m}$, $\left.4-\mathrm{H}_{2}\right), 2.41-2.52(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.61(1 \mathrm{H}$, ddd, $J 16.0,9.0,4.6$,
one of $\left.5-\mathrm{H}_{2}\right), 2.73\left(1 \mathrm{H}\right.$, ddd, $J 16.0,6.6,4.6$, one of $\left.5-\mathrm{H}_{2}\right), 3.07$ ($1 \mathrm{H}, \mathrm{brt}, J 8.6,9 \mathrm{~b}-\mathrm{H}), 3.70(1 \mathrm{H}, \mathrm{td}, J 8.0,4.6,3 \mathrm{a}-\mathrm{H}), 4.11$ ($1 \mathrm{H}, \mathrm{d}, J 15.0$, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$, $5.05(1 \mathrm{H}, \mathrm{d}, J 15.0$, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 7.09-7.24(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.25-7.39 (5 H, m, ArH).

The third fraction gave a mixture of 1-benzyl-3-methyl-spiro[azetidine-4, $2^{\prime}-1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$-tetrahydronaphthalen]-2-one $\mathbf{8 i}$ and ($\left.1 \mathrm{~S}^{*}, 3 \mathrm{aR}^{*}, 9 \mathrm{bR} *\right)-2,3,3 \mathrm{a}, 4,5,9 \mathrm{~b}-$ hexahydro-1H-1-methyl-3-benzylbenz[e]indol-2-one $9 \mathrm{i}-\alpha$ (total 146 mg , total 27%) as an oil. The ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture showed the compound $\mathbf{8 i}$ to be a mixture of two diastereoisomers in a ratio of $c a$. 1.8:1 and the ratio of $\mathbf{8 i}: 9 \mathrm{i}-\alpha$ to be $3.4: 1$, thereby indicating the yields of $\mathbf{8 i}$ and $9 \mathrm{i}-\alpha$ to be 21 and 6%, respectively. A careful separation of the mixture by chromatography on silica gel afforded a small quantity of an analytical sample of $\mathbf{8 i}$ (Found: C, $82.5 ; \mathrm{H}, 7.8 ; \mathrm{N}, 5.0 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1745 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, CDCl_{3}) for the major isomer $1.27(3 \mathrm{H}, \mathrm{d}, J 7.5), 1.88(2 \mathrm{H}, \mathrm{br} \mathrm{t}$, $J 7.2), 2.70-3.02(5 \mathrm{H}, \mathrm{m}), 4.19(1 \mathrm{H}, \mathrm{d}, J 15.6), 4.37(1 \mathrm{H}, \mathrm{d}$, J 15.6) and 6.93-7.36 $(9 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for the minor isomer (diagnostic data only) $1.06(3 \mathrm{H}, \mathrm{d}, J 7.5), 4.26$ (1 $\mathrm{H}, \mathrm{d}, J 15.4)$ and $4.41(1 \mathrm{H}, \mathrm{d}, J 15.4)$; for $9 \mathrm{i}-\alpha: v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ $1690 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.97(3 \mathrm{H}, \mathrm{d}, J 7.7), 1.57-1.79(2 \mathrm{H}$, m), $2.61-2.80(3 \mathrm{H}, \mathrm{m}), 3.68-3.79(2 \mathrm{H}, \mathrm{m}), 4.15(1 \mathrm{H}, \mathrm{d}, J 15.1)$, $5.04(1 \mathrm{H}, \mathrm{d}, J 15.1)$ and $7.1-7.4(9 \mathrm{H}, \mathrm{m})$.

Radical cyclisation of $\mathbf{6 j}$

Following the general procedure, compound $\mathbf{6 j}$ ($497 \mathrm{mg}, 1.30$ mmol) was treated with $\mathrm{Bu}_{3} \mathrm{SnH}(468 \mathrm{mg}, 1.61 \mathrm{mmol})$ and AIBN ($42 \mathrm{mg}, 0.26 \mathrm{mmol}$). After work-up, the crude material was chromatographed on silica gel [hexane-AcOEt (7:1)] to give 3-benzyl-2,3-dihydro-1H-benz[e]indol-2-one $\mathbf{1 6}^{8}$ (188 mg , 53%), mp 160-160.5 ${ }^{\circ} \mathrm{C}$ (from hexane-AcOEt) (Found: C, 83.5; $\mathrm{H}, 5.5 ; \mathrm{N}, 5.0 . \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}$ requires $\mathrm{C}, 83.5 ; \mathrm{H}, 5.5 ; \mathrm{N}, 5.1 \%$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1715 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.86(2 \mathrm{H}, \mathrm{s}$, $\left.1-\mathrm{H}_{2}\right), 5.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{H}_{2} \mathrm{Ph}\right), 7.01(1 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{ArH}), 7.21-7.37$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.48(1 \mathrm{H}, \mathrm{td}, J 8.3,1.2, \mathrm{ArH}), 7.63(1 \mathrm{H}, \mathrm{d}$, $J 8.3, \mathrm{ArH}), 7.69(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH})$ and $7.76(1 \mathrm{H}, \mathrm{d}, J 8.3$, ArH).

2-Bromo- N -(3,4-dihydro-2-naphthyl)- N -methylpropanamide $\mathbf{6 k}$ Following the general procedure, the imine prepared from β tetralone ($1.55 \mathrm{~g}, 10.6 \mathrm{mmol}$) and a large excess of methylamine was treated with 2-bromopropanoyl bromide $(2.74 \mathrm{~g}, 12.7$ $\mathrm{mmol})$ in the presence of triethylamine $(1.3 \mathrm{~g}, 12.7 \mathrm{mmol})$, and the crude material was chromatographed on silica gel [hexaneAcOEt (4:1)] to give $\mathbf{6 k}(2.39 \mathrm{~g}, 76 \%)$ as an oil (Found: \mathbf{M}^{+}, 293.0402. $\mathrm{C}_{14} \mathrm{H}_{16}{ }^{79} \mathrm{BrNO}$ requires M^{+}, 293.0415); $v_{\max }\left(\mathrm{CCl}_{4}\right) /$ $\mathrm{cm}^{-1} 1670 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.80(3 \mathrm{H}, \mathrm{d}, J 7), 2.3-2.7(2 \mathrm{H}$, m), 2.8-3.2 ($2 \mathrm{H}, \mathrm{m}$), $3.10(3 \mathrm{H}, \mathrm{s}), 4.83(1 \mathrm{H}, \mathrm{q}, J 7), 6.40(1 \mathrm{H}$, brs) and $7.10(4 \mathrm{H}, \mathrm{br}$ s).

N-Benzyl-2-bromo- N -(3,4-dihydro-2-naphthyl)propanamide 61 Following the general procedure, the imine prepared from β tetralone ($1.17 \mathrm{~g}, 8.0 \mathrm{mmol}$) and benzylamine ($943 \mathrm{mg}, 8.8$ mmol) was treated with 2-bromopropanoyl bromide (2.25 g , $10.4 \mathrm{mmol})$, and the crude material was chromatographed on silica gel [hexane-AcOEt (5:1)] to give $6 \mathbf{l}(2.83 \mathrm{~g}, 95 \%)$ as an oil (Found: $\mathrm{M}^{+}, 369.0725 . \mathrm{C}_{20} \mathrm{H}_{20}{ }^{79} \mathrm{BrNO}$ requires $M^{+}, 369.0728$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1665 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.80(3 \mathrm{H}, \mathrm{d}, J 7)$, $2.15-2.6(2 \mathrm{H}, \mathrm{m}), 2.7-3.1(2 \mathrm{H}, \mathrm{m}), 4.70(2 \mathrm{H}, \mathrm{s}), 4.82(1 \mathrm{H}, \mathrm{q}$, J 7), $6.17(1 \mathrm{H}, \mathrm{br}$ s) and 6.8-7.4 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Studies on the effect of temperature on the regioselectivity in radical cyclisations of 6 k and 61

A mixture of $\mathrm{Bu}_{3} \mathrm{SnH}(348 \mathrm{mg}, 1.2 \mathrm{mmol})$ and AIBN (33 mg , 0.2 mmol) in benzene or toluene ($50 \mathrm{~cm}^{3}$) was added to a boiling solution of $\mathbf{6 k}(293 \mathrm{mg}, 1 \mathrm{mmol})$ or $\mathbf{6 1}(369 \mathrm{mg}, 1 \mathrm{mmol})$ in the same solvent $\left(100 \mathrm{~cm}^{3}\right)$ as that described above by using a syringe pump over a period of 3 h . For the reactions in benzene, heating was continued for a further hour. After usual work-up, the crude material was chromatographed on silica gel [hexane-

AcOEt (9:1)]. The first fraction gave the simple reduction product $\mathbf{1 5}$ (from 6k) or $\mathbf{1 4}$ (from 61).

The second fraction gave a mixture of the radical cyclisation products $\mathbf{8 b}$ and $\mathbf{9 b}$ (from $\mathbf{6 k}$) or $\mathbf{8 i}$ and $9 \mathbf{i}$ (from 6l), whose ratios were estimated by the integrated intensities of the peak height of the C-methyl protons at $\delta 1.02$ and 1.20 (for the two diastereoisomers of $\mathbf{8 b}$), $\delta 0.90$ and 1.41 (for the two diastereoisomers of $9 \mathbf{9 b}$), $\delta 1.06$ and 1.27 (for the two diastereoisomers of $\mathbf{8 i}$) and $\delta 0.97$ and 1.46 (for the two diastereoisomers of $\mathbf{9 i}$). These results are summarised in Table 1.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan and Ciba-Geigy Foundation (Japan) for the Promotion of Science (H. I.).

References

1 For reviews, see (a) B. Giese, Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds, Pergamon, New York, 1986; (b) D. P. Curran, Synthesis, 1988, 417 and 489; (c) C. P. Jasperse, D. P. Curran and T. L. Fevig, Chem. Rev., 1991, 91, 1237.
2 (a) H. Ishibashi, N. Nakamura, T. Sato, M. Takeuchi and M. Ikeda, Tetrahedron Lett., 1991, 32, 1725; (b) T. Sato, N. Nakamura, K. Ikeda, M. Okada, H. Ishibashi and M. Ikeda, J. Chem. Soc.,

Perkin Trans. 1, 1992, 2399; (c) T. Sato, N. Chono, H. Ishibashi and M. Ikeda, J. Chem. Soc., Perkin Trans. 1, 1995, 1115; (d) H. Ishibashi, Y. Fuke, T. Yamashita and M. Ikeda, Tetrahedron: Asymmetry, 1996, 7, 2531.
3 (a) K. Goodall and A. F. Parsons, J. Chem. Soc., Perkin Trans. 1, 1994, 3257; (b) K. Goodall and A. F. Parsons, Tetrahedron, 1996, 52, 6739; (c) K. Goodall and A. F. Parsons, Tetrahedron Lett., 1997, 37, 491.

4 (a) H. Ishibashi, C. Kameoka, R. Ueda, K. Kodama, T. Sato and M. Ikeda, Synlett, 1993, 649; (b) H. Ishibashi, C. Kameoka, H. Iriyama, K. Kodama, T. Sato and M. Ikeda, J. Org. Chem., 1995, 60, 1276; (c) H. Ishibashi, C. Kameoka, K. Kodama and M. Ikeda, Tetrahedron, 1996, 52, 489; (d) H. Ishibashi, K. Kodama, C. Kameoka, H. Kawanami and M. Ikeda, Tetrahedron, 1996, 52, 13 867; (e) H. Ishibashi, C. Kameoka, K. Kodama, H. Kwanami, M. Hamada and M. Ikeda, Tetrahedron, 1997, 53, 9611.
5 J. L. Belletire, C. E. Hagedorn, D. M. Ho and J. Krause, Tetrahedron Lett., 1993, 34, 797.
6 For the reversibility of cyclisation of pent-4-enyl radicals and related species, see ref. $4(b)$ and references cited therein.
7 H. Ishibashi, M. Higuchi, M. Ohba and M. Ikeda, Tetrahedron Lett., 1998, 39, 75.
8 J. Axon, L. Boiteau, J. Boivin, J. E. Forbes and S. Z. Zard, Tetrahedron Lett., 1994, 35, 1719.

Paper 8/01714J
Received 2nd March 1998
Accepted 18th March 1998

